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We have studied the problem of mode selection, specifically, selection of the 
lamellar spacing, in eutectic solidification, by constructing a caricature of a 
thin-film eutectic solidifying at constant velocity in the presence of a finite- 
temperature gradient and in a slightly noisy environment. Our model incorpo- 
rates mechanisms which allow termination of substable lamellae and creation of 
new lamellae by the splitting of lamellae larger than a spacing Xmax' We have 
studied this model both by a simple analytic approximation and by computer 
simulation. We find that both the steady state spacing and the regularity of the 
pattern are sensitively dependent on the ratio hma• where ~min is the 
minimum spacing required for steady state stability. An additional result to 
emerge from our investigation is that when Xm~x becomes less than a critical 
value, the system apparently undergoes a transition into a chaotic state. 

KEY WORDS: Eutectic; mode selection; directionat solidification; fluctua- 
tions; marginal stability. 

1. INTRODUCTION 

Directional solidification of a binary fluid near its eutectic composition 
often produces an alternating parallel array of lamellae of the two coexist- 
ing solid phases. (1)' 4 The central question in the theory of this process is the 
way in which the system selects its mode of growth, specifically, its lamellar 
spacing. Related questions pertain to fluctuations in the spacing, the 
frequency of defects, and the existence of oscillatory or other more complex 
growth forms. The conventional assumption in the metallurgical literature 
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is that eutectic arrays growing at fixed velocity choose the lamellar spacing 
which minimizes the undercooling at the solidification front. Equivalently, 
an array growing at fixed temperature is assumed to maximize its velocity. 
We have shown in recent publications (3-5) that these growth criteria are 
equivalent to a principle of marginal stability which states that the system 
will operate at a point where it is just on the verge of being unstable against 
fluctuations which tend to change its spacing. These equivalent hypotheses 
predict a relation of the form 

X2v = const (1.1) 

where X is the lamellar spacing, v is the growth velocity, and the constant 
on the right-hand side is a well-defined function of the properties of the 
solidifying material--interfacial tensions, diffusion constants, etc. The func- 
tional form of (1.1) has been verified experimentally (6~ but, to our knowl- 
edge, the value of the constant has never been checked by independent 
measurements of its various ingredients. 

There exists no truly compelling argument in favor of the minimum- 
undercooling-marginal-stability hypothesis. Our intuitive argument for 
marginal stability, that the system drifts toward the instability because 
fluctuations tending in that direction persist for longer times than those that 
go the other way, does not preclude situations in which other forces or 
constraints are dominant. Because of this uncertain theoretical situation, it 
seems useful to study very simplified models of eutecticlike pattern-forming 
systems, if only to gain some qualitative understanding of what kinds of 
mode-selection mechanisms are possible. 

Accordingly, in what follows we consider a mode-selection model 
which has some, but by no means all, of the essential features of the 
eutectic solidification problem. This euctectic caricature is based on a 
nonlinear partial differential equation derived previously by one of us 
(JSL) (3) in an analysis of eutectic growth near the marginal-stability point. 
The caricature is intended to resemble, very crudely, a thin-film eutectic 
solidifying at constant velocity with a finite-temperature gradient at the 
solidification front and in a slightly noisy environment. In addition to the 
diffusion kinetics described by the basic equation of motion, we introduce 
into our model mechanisms which allow substable lamellae to terminate 
and new lamellae to form, the latter process occurring by splitting of 
lamellae which have grown too wide. The ratio of the maximum lamellar 
width, Xma ~, to the minimum width required for stability, Xmi n, turns Out to 
be the dimensionless parameter which, along with the noise strength, 
controls the qualitative behavior of our model~i ts  average spacing and the 
regularity of the lamellar pattern. 

We have studied this model both by a simple analytic approximation 
and by computer simulation. As will be apparent in our description of these 
studies, this model does not generally select its steady mode of operation 
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near the marginal-stability point. Rather, when • . . . .  is appreciably greater 
than ~krnin , and when the noise strength is not too large, the average spacing 
occurs roughly halfway between Xma x and ~kmi n. As the noise strength 
increases, the spacing shifts toward ~kmin; and this shift is all that remains of 
the marginal-stability principle. Apparently the system is too highly con- 
strained for this principle to have a dominant effect; the mechanisms for 
changing the lamellar spacing--splittings and terminations--require pertur- 
bations of the system which are too large and discontinuous to permit the 
drift toward instability that seems to occur, for example, in dendritic 
systems. 

One specially interesting result to emerge from our investigation is 
that, when )~r~x decreases toward ;km~ n, the system apparently undergoes a 
transition into a chaotic state. That  is, even in the absence of external noise, 
the system exhibits spatially and temporally persistent, irregular motion. 
We believe that behavior of this kind has been seen experimentally. (7) 

The scheme of this paper is as follows. Our eutectic caricature is 
described in Section 2. Section 3 is devoted to a simple "mean-field" 
approximation for the system which, while very crude, provides some 
insight regarding both the mechanisms for mode selection and the tran- 
sition to chaotic behavior. The computer simulations are described in Sec- 
tion 4. 

2. D E F I N I T I O N  O F  T H E  M O D E L  

The starting point of our investigation is an approximate equation of 
motion (s) for the lamellar width X at a position x along the solidification 
front of a eutectic array (see Fig. 1). This equation has the form 

OX _ vX 0 2 AT(X) (2.1) 
Ot G Ox 2 

G,v 
Liquid (Hot) 

XL 
Solid (Cold) 

) 
x 

]Fig. t. Schematic illustration of a lamellar eutectic undergoing directional solidification in 
the z direction with velocity v, in the presence of a thermal gradient, G. The lamellar widths X i 
are shown. 
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where v is the growth velocity, G the temperature gradient, and '5 T(X) the 
Jackson-Hunt  (1) relation between X and the undercooling 2xT (measured 
from the eutectic temperature ;re) at the liquid-solid interface. Equation 
(2.1) can be understood qualitatively by noting that 2xT/G is the position 
of the solidification front in the imposed thermal field, thus the right-hand 
side is approximately proportional to the curvature of this front. If the 
lamellae grow at velocity v normal to the front, then (2.1) describes how 
their widths decrease as they converge in a region of positive curvature or 
similarly increase where the curvature is negative. The equation, as written, 
is valid only in the case of a substantial temperature gradient G moving 
with the front and oriented in the direction of growth, so that curvatures 
are expected to be small and the overall orientation of the front is fixed. 

The function 2xT(X) has the form 

AT = ~ ~ + (2.2) 

Here, ~kmi n has the characteristic form of a stability length; that is, 

Xmin OC (Ddo/v) 1/2 (2.3) 

is the geometric mean of a capillary length d o and the diffusion length D/v, 
where D is the diffusion constant in the fluid. The temperature A Tmi n is 
proportional to the dimensionless group of parameters (dov/D)l/2 For our 
purposes, the important feature of AT is that it passes through a minimum 
as a function of ?~ at X = ~kmin, A T = A Tmi n. 

Equation (2.1), by itself, does not contain enough of the detailed 
lamellar dynamics to be a complete model of mode selection. As was 
pointed out in Ref. 3, this equation describes the onset of instabilities which 
lead to terminations of lamellae; but it does not tell us how the system 
recovers from such events, nor does it tell us how new lamellae might be 
formed. Both of the latter mechanisms will be necessary ingredients of any 
model that will permit us to study, for example, how a lamellar array 
emerges from an initially irregular configuration or adjusts to subsequent 
perturbations. 

The mathematical model that we have chosen to investigate--our 
eutectic "caricature"--is based crudely on (2.1) and contains the termina- 
tion and creation mechanisms in a way which is very simple but not 
entirely unrealistic. It is described by the following set of coupled nonlinear 
differential equations: 

~Ai _ (Ai+ 1 _ 1)2_ 2 ( A i -  1)2+ (Ai_ l - 1)2+ r/i - ~i , ,  

0 < A  s < A m .  X (2.4) 

Here, A i may be thought of as the width of the ith lamella measured in 
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units of ~min, 1- is a timelike variable, and rii is a random force to be 
specified below. Note that the A-dependent part  of the right-hand side of 
(2.4) is a finite-difference approximation for right-hand side of (2.1) with 
the original X dependence of AT as given in (2.2) replaced by a simple 
quadratic minimum at A = 1. The noise 7/is chosen so that 

(~s(Or i /C))  = 0 3 ~ 3 ( t -  C) (2.5) 

where the angular brackets denote a statistical average and 0 is an effective 
temperature. (We believe that thermal fluctuations are much too small to 
play any role in mode selection, and suspect that the important sources of 
noise are irregularities in the walls of the container or other macroscopic 
inhomogeneities.) The O's have been inserted into (2.4) in such a way that 
the total width of the system is conserved. It will be convenient in later 
numerical work to impose reflecting boundary conditions at the edges of 
the system; that is, A_ 1 = AI, AN+I = AN-1, and rt0 = V/N. Then 

N - - I  

L -- ~2 As+ �89 0 + AN) (2.6) 
i=1  

is a constant of the motion, even in the presence of the noise. 
The most natural way to introduce lamellar terminations and creations 

for a eutectic with roughly equal volume fractions of the two solid phases - -  
the physical situation to which our model is most nearly applicable--would 
be to define transition rules as illustrated in Fig. 2a. Specifically, whenever 

Termination Creation 

(o) 

Termination Creatdon 

(b) 

Fig. 2. Schematic illustration of termination and creation of iamellae. (a) Equal voIume 
fractions. (b) Highly unequal volume fractions. The version used in this paper corresponds to 
case (b). 
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some A i vanishes, that lamella is removed from the system, and the two 
neighboring lamellae are combined to form a single one at that position. 
Whenever some Ai exceeds a predetermined Area x, that lamella is split into 
three new ones of width Ai/3. This mechanism, however, is slightly 
inconvenient for technical reasons; and, because our caricature is not 
intended to be very realistic in any case, we have chosen to work with the 
simpler version shown in Fig~ 2b. We have drawn Fig. 2b so as to suggest 
that the volume fractions of the solid phases are far from equal and that the 
A s refer only to the widths of majority-phase tameltae. Here, a termination 
occurs when some Ar vanishes, but the two neighboring lamellae continue 
on as before. A splitting occurs when some A~ exceeds Am~ x; but now just 
two lameltae appear with widths Ai/2. 

The quantity Area x = Xmax/Xmin has become the principal control pa- 
rameter in this system. Jackson and Hunt (~) have attempted a first- 
principles calculation of Xm~ • by noting that the steady state solution for the 
detailed shape of the lamellar solidification front seems to break down 
when X becomes too large, and by identifying ~kma x a s  the point at which 
this breakdown occurs. They have shown experimentally (8) that splittings 
occur under roughly the conditions predicted. Their calculation, however, is 
not fully self-consistent, nor is it obvious that the deformed solidification 
front remains dynamically stable all the way out to where the steady state 
solutions develop anomalies. Nash (9) has carried out a detailed self- 
consistent calculation of the steady state interface shape. However, the 
conditions under which breakdown occurs have not been investigated and 
the numerical results reported are only for the case of vanishing thermal 
gradient. Our current guess is that, in the limit of small temperature 
gradient G, Xma x scales like a stability length of the same form as  ~kmi n i n  
(2.3), so that Am~ ~ is a number of order unity which depends only on 
system parameters like volume fractions or ratios of interracial energies. 
Am~ ~ should increase with increasing G; more specifically, we guess that 
Area x is an increasing function of the dimensionless group GD/TEv. 

3. M E A N - F I E L D  A P P R O X I M A T I O N  

To get a qualitative idea of what is happening in this model, we have 
found it useful to look at the following very simple mean-field approxima- 
tion. Let A be some characteristic lamellar width to be determined self- 
consistently, and consider a single lamella of width A. If we assume that the 
lamellae on either side of A have widths A, then (2.4) without noise 
becomes 

8~ (3.1) dA _ 2 ( A -  1) 2 -  2 ( A -  1) 2=  8A 
dr 
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Here we have introduced a velocity potential in A space, 

4 ( 1 )  = 2 ( A -  1) 3 -  2 ( A -  I ) 2 ( A -  1) (3.2) 

which has a stable minimum at A = A and an unstable maximum at 
A = 2 -  A. To include noise-induced fluctuations, we use (3.1) to write an 
equation of motion for the distribution function n(A, r): 

an _ a_J_J +s6 (A  - As) (3.3) 
3r OA 

where the A flux J is 

aq~ On J = - ~ n  - 20 OA (3.4) 

and s is the strength of the source of new lamellae being created at 
A = A s -= Amax/2 because of splitting at Area X. We shall let the distribution 
function n be normalized so that 

s ~r)AdA= 1 (3.5) 

Then the source strength s is the number of lamellae created per unit time 
per unit length of the system. 

Using the termination and creation rules summarized in Fig. 2b, we 
can construct a steady state solution of Eqs. (3.3) and (3.4). Figure 6 shows 
the steady state n(A) for some typical cases. As indicated in Fig. 6a, we 
have set J = - -  J - in the region 0 < A < A s and J = J + in A, < A < A m a  x .  

The distribution n(A) must vanish at A = 0 and A = Amax, and must be 
continuous in value but have a discontinuity in its first derivative at 
A = A s. The discontinuity in the flux at A s is equal to the source strength s: 

s =  j +  + j  - 

and the spIitting rule implies that 

s = 2J  + 

Thus 

J+ = J -  =�89 

We can integrate (3.4) to obtain 

(3.6) 

(3.7) 

(3.8) 

n(A > A,) = .s e-~(A)/20 ('Am,xe,(A')/20dA, 
4 0  36 

n ( A  < A,)  = ,-Y-a e-~("x)/2~176 d A '  
'.~tV ,1 O 

(3.9a) 

(3.9b) 
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Then the normalization condition (3.5) and the condition of continuity at 
As, 

lira n(A > A,) = lira n(A < A,,) (3.1.0) 
A---> A~ A-.-> A, 

are sufficient to determine s and A. 
The only case in which the mean-field approximation might be taken 

seriously is when 0 is small so that n(A) is sharply peaked near A = A[ In 
that case, the integrands in (3.9) are also sharply peaked, and we can make 
simple estimates which allow us to evaluate s and A explicitly. We can see 
immediately, however, that the success of this procedure requires a Suffi- 
ciently large Am, X even in the limit of vanishingly small 0. Remember that 
the equation of motion (3.1) has a stable fixed point at A = X and an 
unstable one at A = 2 - A. Lameltae with A < 2 - X move directly toward 
termination at A = 0 in this approximation. If Ama X is so small that 
A, = Ampex/2 is less than 2 - A, then all splittings lead to terminations and, 
at the very least, the nature of the small-0 solution changes dramatically. 
We shall see later that this is the mechanism which produces something like 
turbulence at small Area x. For the moment, we shall simply assume A, 
> 2 - A ,  

Given this assumption, we can see that the peak in the integrand in 
(3.%) is at A = Am~ x, and that in (3.9b) it is at 2 - A, Thus 

n (A > A,) ~ s exp 
2 '(Am.x) 20 

( [  ~'(Amax)(A- Amax)] } (3.11a) • 1 - exp 20 

and 

s 4rr exp[ ~b(2- ~--)0- (3. t lb)  ,,(a < A)I 

The continuity condition (3.t0), after a little algebra, yields 

1 (1 + Am~) 0 in (3.12) X.-~ ~- 3(amax _ 1) 2 80 
The corresponding estimate for s, obtained by using (3.t la) in the normal- 
ization condition (3.5) and making the obvious Gaussian approximation, is 

6 [ ( Amax- 1) 5 ]l/2exp[_ ~(2~+Amax_3)(ama X_~)2] 
(1 + Am,x) 

oc exp[ -- ~0 (Amax-- 1)3 ] (3.t3) 
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Using (3.1 la) for n(A), the mean-square deviation (6A 2) in the Gaussian 
approximation is 

(8A2) ~ 0 (3.14) 
+"(X) 

One interesting feature of these results is that the characteristic lamel- 
far width A, in the limit of small 0, occurs halfway between Area X and 1. The 
steady state configuration quite simply must balance the rates of splittings 
and terminations, and it does this by choosing a A which is equidistant 
from both ends of the range of allowed, stable values. The only vestige of 
the marginal-stability mechanism is the second term on the right-hand side 
of (3.12) which describes a 0-dependent shift toward the dynamical instabil- 
ity at A = 1. A second feature of interest is that the small-0 relation, 
A = (l + Am,x)__/2, when inserted into the steady state criterion A s = 
Amax/2 > 2 -  A, yields a lower bound for Area ~. Specifically, Ama x % 1.5. 
Although differentially stable states exist in this model at any uniform A 
greater than 1, our mean-field ~fnalysis indicates that these states may be 
unstable against finite-amplitude perturbations if A~a ~ is too small. 

The mean-field equations (3.5), (3.9), and (3.10) can easily be solved 
numerically, that is, by direct numerical integration of (3.9) without making 
the small-0 approximation. The significance of going beyond small 0 is 
questionable. However, it turns out that the "exact" mean-field results 
compare fairly well with direct numerical simulation of the caricature, and 
that comparison by itself is of some interest. We shall present both kinds of 
numerical results together in the next section. 

4. N U M E R I C A L  S I M U L A T I O N  

Our eutectic caricature lends itself readily to numerical simulation; 
indeed, it was designed with that in mind. 

We have used the following temporal discretization of the (already 
spatially discrete) equations of motion (2.4): 

A~+I _ a y  
_ , a M + , _  1 ) ( A ~ -  1 ) -  2(A) w + ' -  I)(A~ t -  1) 

+ ( A ~  1 - l ) (  - I  A M  - -  1)  -'[- Ti M - -  T~i M~ 1 (4.1) 

where the superscripts M, M + 1 label time steps taken in units Az. This 
implicit scheme has allowed us to use large time steps AT (of order 10-1) 
under most circumstances. The reflecting boundary conditions stated pre- 
ceding Eq. (2.6) are physically realistic in that they simulate rigid edges. 
They also speed the computation by making it possible to obtain the A~ ~+t 
from tile A~ by inversion of a simple banded matrix. (Periodic boundary 
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conditions would have permitted sidewise drift of the array as a whole, and 
would have required a more time-consuming matrix inversion.) The noise 
source ~i(~) has been simulated by writing 

rli M = ~ a i  M (4.2) 

where ai M is a random number in the interval [ -  1, 1] chosen separately for 
each i, M and 

0 = �89 - (4.3) 

where 0 is the effective temperature defined in (2.5). 
In our simulation experiments, we generally have started with a set of 

A i which are random numbers in some interval [ a , b ]  and then have 
computed the time evolution by iterating (4.1). Quantities monitored during 
this evolution include the average spacing 

L (4.4) ( A ) -  N 

the mean square deviation 

1 ~i  (Ai - (AS) 2 (4.5) (3A 25 = 

and the cumulative numbers of terminations and splittings. Here, N is the 
instantaneous total number of lamellae and L is the constant length defined 
in (2.6). We also have recorded the lamellar widths Ai(~" ) so as to be able to 
make real-time plots of the evolution of the lamellar array. At finite values 
of 0, we have always observed the system to relax into a steady state 
situation with time-dependent values of (A),  (3A2), etc. independent of 
the initial configuration. All of the data presented below have been ob- 
tained for systems with L ~ 20. We have checked and have failed to find 
any appreciabel L dependence of the above quantities for systems of this 
size. 

Figure 3 is a graph of the steady state average spacing ('A) as a 
function of Area x for various values of 0. At large Ama X and small 0 the 
results of the computer simulation are in good agreement with the corre- 
sponding mean-field values for the average spacing. 

Both the source strength s, which can be identified as the average 
number of terminations or splittings per unit length per unit time, and the 
ratio ( 3 A 2 ) / ( A )  2 are measures of the intensity of disorder in the system. 
These quantities are shown, again as functions of Ama • and 0, in Figs 4 and 
5. We find that @ A a ) / ( A )  2 predicted by mean-field theory agrees quite 
well with the computer simulation at small 0 and large Area x. For example, 
in Fig. 5 the slope of ( 3 A 2 ) / ( A  2) vs 0 at the origin for the curve 
Area • = 2.1 is 0.34, while the corresponding mean-field value from Eq. (3.14) 
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Fig. 4. Source strength s as a function of Area X for four different values of the noise strength 
0, as obtained from the computer simulation. Solid lines are drawn to guide the eye. Values of 
0: El, 0.00; �9 0.03; 0 ,  0.13; •  0.30. 
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Fig. 5. Graph of the mean square deviation in the lamellar spacing, ( 6 A 2 ) / ( A )  2, as a 
function of noise strength 0, for four different values of Area x (values of Area • : O, 1.2; [], 1.5; 
•  1.8; ~ ,  2.1). The data points are obtained from computer simulation, the solid lines are 
drawn to guide the eye. 

is 0.38. Both figures show a sensitive dependence on Area x and, in particu- 
lar, indicate that the external noise is increasingly amplified as Am~ x 
decreases. The most dramatic feature to emerge from these numerical 
experiments is that the disorder in the system seems to persist indefinitely 
for values of Area x less than some critical A c ~ 1.3. This effect is shown 
quantitatively by the points marked 0 = 0 in the figures. We believe that 
here we are seeing the intrinsic chaotic behavior suggested by the break- 
down of the mean-field theory for Area x < 1.5. 

In Fig. 6 we plot the steady state distribution function n(A), obtained 
from the computer simulation, for some typical cases. The histograms 
shown in the figure represent averages over several snapshots of the system 
in steady state. The snapshots are separated by a sufficiently large time 
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Lamellar Spacing A 

Fig. 6. Histograms of  the steady state lamellar distribution funct ion n(A)  as obtained from 
the computer  simulation.  The corresponding mean-f ie ld  n(A)  is superimposed on each plot for 
comparison.  (a) 0 = 0.0083, A . . . .  = 1.5; (b) 0 = 0.0333, Area • = 1.8; (c) 0 = 0.1333, Area x = 1.8;  

(d) 0 = 0.0333, A~lax = 2.1. 
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2 .0  

interval ( ~  300 time steps), so as to ensure that they are statistically 
independent. The corresponding mean-field distributions are superimposed 
on these plots for comparison. As mentioned above, the comparison is 
somewhat better than might have been expected at small 0 and large Am~ x. 

Figures 7-9 are pictures of the eutectic pattern as might be seen by 
direct observation of the system after solidification had taken place in the 
upward direction. That  is, the tamellar widths are displayed along the 
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Fig. 7. 

5 I0 15 20 25 

Pos i t i on  

Time  evolu t ion  of the  l ame l l a r  a r r ay .  S t e a d y  s ta te  b e h a v i o r  a t  Ama • = 1.8, 0 = 0.048. 

horizontal axis and ~- increases in the vertical direction. Figure 7 shows a 
normal steady state behavior, with occasional terminations and splittings, 
for Ama x = 1.8 and 0 = 0.048. Figures 8 and 9 are both pictures of behavior 
with no external noise, 0 = 0. In Fig. 9, with Ama x = 1.3, the initially 
disordered system has settled down into an oscillating mode in which a 
kink propagates from side to side and is reflected at the edges. Figure 9 
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3oo / I 
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Fig. 9. Fully turbulent behavior at Ama ~ = 1.2, 0 = 0. 

shows what looks like fully turbulent behavior a t  A m a  x -~- 1.2. SO far as we 
can tell, the latter two modes of behavior persist indefinitely. 
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